On some “dark” elements of bovine leukemia
https://doi.org/10.52419/issn2782-6252.2025.1.41
Abstract
The paper discusses materials on some little-covered elements of science and practice related to enzootic bovine leukosis. In particular, the infectious cycle, kinetics of malignant lymphocyte proliferation, hemocontact transmission of infection and impossibility of intrauterine infection, contagiousness, proviral load and its significance in epizootology, adaptive immunity, and danger to humans are considered.
About the Authors
V. V. MakarovRussian Federation
Vladimir Vl. Makarov - Doctor of Biological Sciences, Professor
Moscow
A. A. Stekolnikov
Russian Federation
Anatoly Al. Stekolnikov - Doctor of Veterinary Sciences, Professor, Academician of the Russian Academy of Sciences
Saint Petersburg
References
1. Vorobyov A.A., Nekrasov I.L., Bandakov. Needle-free method of introducing biological preparations into the body. Moscow: Medicine. 1972. 102 p.
2. Hemocontact infections and their prevention. Available at: https://46.rospotrebnadzor.ru/content/gemokontaktnyeinfekcii-profilaktika (accessed: 03.02.2025)
3. Gurtsevich V.E. HTLV-1 - infection in Russia and the republics of the former USSR (seroepidemiological and molecular biological studies). Hematology and Transfusiology. 2000; 3: pp 56-60.
4. Bovine leukemia: imaginary or real problem? Effective animal husbandry. 2020;No. 2 (159): pp. 78-81.
5. Makarov V.V., Grinishin D.P. Epizootological prospects of bovine leukemia. Bulletin of the Russian Agricultural Academy. 2005; 2: pp. 70-73.
6. Makarov V.V., Grinishin D.P. PCR in the diagnostics of bovine leukemia. Veterinary science. 2005; 4: pp. 9-11
7. Makarov V.V., Lozovoy D.A. Bovine leukemia - a modern concept. Vladimir: FGBU "ARRIAH", RUDN. 2020. 52 p.
8. Makarov V.V., Lozovoy D.A. Epizootological features of modern bovine leukemia. Bulletin of the Russian agricultural science. 2020; No. 1: pp. 53-58.
9. Makarov V.V., Lozovoy D.A. On the role of diagnostics in anti-leukemia measures. Veterinary Science. 2020; 8: pp. 3-11.
10. Makarov V.V. Transmission and pathogenesis of bovine leukemia. Bulletin of Russian agricultural science. 2020; 2: pp. 44-47.
11. Makarov V.V. Bovine leukemia. Russian veterinary journal. 2020; 2: pp. 18-26.
12. Makarov V.V. Epizootological aspects of retroviral pathology (part I). Veterinary Science. 2023; 8: pp. 3-7. (part II) // ibid., No. 9. Pp. 3-10.
13. Makarov V.V. On the epizootology of bovine leukemia. Actual issues of veterinary biology. 2024;1 (61): pp. 10-14
14. Aida Y., Murakami H., Takahashi M. et al. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol. 2013;4: pp. 328. doi: 10.3389 / fmicb.2013.00328
15. Benavide B., Monti G. Bovine leukemia virus transmission rates in persistent lymphocytotic infected dairy cows. Front. Vet. Sci. 17 July 2024 Sec. Veterinary Epidemiology Volume 11 - 2024 | https://doi.org/10.3389/fvets.2024.1367810
16. Blogg C., Ramsay M., Jarvis J. Infection hazard from syringes. BJA British Journal of Anaesthesia. 46(4). DOI: 10.1093/bja/46.4.260
17. Buehring G., Shen H., Jensen H. et al. Exposure to Bovine Leukemia Virus Is Associated with Breast Cancer: A CaseControl Study. PLoS One. 2015 Sep 2;10(9):e0134304. doi: 10.1371/journal.pone.0134304.
18. Ellis J. Passive transfer of colostral leukocytes: A benefit/risk analysis./ Can Vet J 2021;62:233–239
19. Enzootic bovine leukosis EFSA Panel on Animal Health and Welfare (AHAW). First published: 10 July 2015. https://doi.org/10.2903/j.efsa.2015.4188
20. Equine infectious anemia. Available at: https://www.veterinarypracticenews.com/understanding (accessed: 03.02.2025)
21. Gao A., Kouznetsova V., Tsigelny I. Bovine leukemia virus relation to human breast cancer: Meta-analysis. Microb Pathog. 2020 Dec;149:104417. doi: 10.1016/j.micpath.2020.104417.
22. Gillet N., Florins A., Boxus M. et al. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology. 2007 Mar 16;4:18. doi: 10.1186/1742-4690-4-18.
23. Gillet N., Willems L. Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA // Retrovirology. 2016. 13. 1.:p. 75.
24. Gutiérrez G., Merlini R., Alvarez R.et al. Dynamics of perinatal bovine leukemia virus infection. BMC Veterinary Research. 2014; 10(1): p. 82. doi: 10.1186 / 1746-6148-9-95
25. Hoshino H. Cellular factors involved in HTLV-1 entry and pathogenicity. Front. Microbio. 2012;3: pp. 222. doi: 10.3389/fmicb.2012.0022
26. Human_T-lymphotropic_virus. Available at: https://wiki2.org/en/ (accessed: 03.02.2025)
27. Juliarena M., Barrios C., Lützelschwab C. et al. Bovine leukemia virus: current perspectives, Virus Adaptation and Treatment, 2017, Vol. 9, pp. 13-26. doi.org/10.2147/VAAT.S113947
28. Juliarena M., Gutierrez S., Ceriani C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am. J. Vet. Res. 2007; Nov, 68 (11): pp. 1220-5. DOI: 10.2460 / ajvr.68.11.1220
29. Igakura T., Stinchcombe J., Goon P.et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003;299: 1713-1716
30. Lv G., Wang J., Lian S. et al. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals. 2024; 14: 297. https://doi.org/10.3390/ani14020297
31. Mazzarello A., Fitch M., Hellerstein M. et al. Measurement of Leukemic B-Cell Growth Kinetics in Patients with Chronic Lymphocytic Leukemia. Methods Mol. Biol. 2019; 1881: 129-151. doi: 10.1007 / 978-1-4939-8876-1_11.
32. McClure H., Keeling M., Custer R. et al. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Res. 1974 Oct;34(10):2745-57.
33. Mekata H., Sekiguchi S., Konnai S. et al. Evaluation of the natural perinatal transmission of bovine leukaemia virus. Vet. Record. 2015; 176(10): 274. http://dx.doi.org/10.1136/vr.102464
34. Mekata H., Yamamoto M., Hayashi T. et al. Cattle with a low bovine leukemia virus proviral load are rarely an infectious source. Japanese J. of Vet. Res. 2018; 66(3): 157-163. doi: 10.14943/jjvr.66.3.157
35. Merezak C., Pierreux C., Adam E. et al. Suboptimal Enhancer Sequences Are Required for Efficient Bovine Leukemia Virus Propagation In Vivo: Implications for Viral Latency. J Virol. 2001. https://doi.org/10.1128/jvi.75.15.6977-6988.2001
36. Messmer B., Messmer D., Allen S. et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 2005; Mar, No. 115(3): 755-764
37. Miller J., Miller L., Olson C, et al. Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. JNCI-J. Natl. Cancer Inst. 1969; 43: 1297–1305.
38. Monti G., Frankena K., De Jong M. Transmission of bovine leukaemia virus within dairy herds by simulation modelling. Epidemiology & Infection. July 2007; Vol. 135, Is. 5: pp. 722 – 732. DOI: https://doi.org/10.1017/S0950268806007357
39. Novo S., Costa J., Baccili C. et al. Effect of maternal cells transferred with colostrum on the health of neonate calves. Research in Veterinary Science/ 2017;112:97–104. doi.org/10.1016/j.rvsc.2017.01.025
40. Ohno A., Takeshima S., Matsumoto Y. et al. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res. 2015 Dec 2;210:283-90. doi: 10.1016/j.virusres.2015.08.020.
41. Panei C., Takeshima S., Omori T. et al. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet. Res. 2013: 9: 95. DOI: 10.1186/1746-6148-9-95
42. Reference values cattle-sheep-goat-piG. Available at: https://laboklin.com/wp-content/uploads/2023/03/Bestell-Poster (accessed: 03.02.2025)
43. Ruiz V., Porta N., Lomónaco M. et al. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front Vet Sci. 2018 Oct 25;5:267. doi: 10.3389/fvets.2018.00267.
44. Sherer N., Lehmann M., Jimenez-Soto L. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol. 2007; 9: 310-315.
45. Shrestha S., Orsel K., Barkema H. et al. Bovine leukemia virus proviral load as a measure for selective removal of cattle for bovine leukosis control. WCDS Advances in Dairy Technology. 2023; Vol. 34: p. 200.
46. Shrestha S., Orsel K., Droscha C. et al. Removing bovine leukemia virus-infected animals with high proviral load leads to lower within-herd prevalence and new case reduction. J. Dairy Sci. 107:6015–6024 https://doi.org/10.3168/jds.2023-24484
47. Suarez Archilla G., Gutierrez G., Camussone C. et al. A safe and effective vaccine against bovine leukemia virus. Front. Immunol. 2022; 13:980514. doi: 0.3389/fimmu.2022.980514
48. Watanuki S., Takeshima S., Borjigin L. et al. Visualizing bovine leukemia virus (BLV)-infected cells and measuring BLV proviral loads in the milk of BLV seropositive dams. Vet Res. 2019 Nov; Vol. 29, 50(1): 102. doi: 10.1186/s13567-019-0724-1.
49. Willems L., Kerkhofst P., Dequiedt F. et al., Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc. Nat. Acad. Sci. USA, Medical Sciences. 1994; Vol. 91: 11532-11536
50. Zhang R., Jiang J., Sun W. et al. Lack of association between bovine leukemia virus and breast cancer in Chinese patients. Breast Cancer Res. 2016 Oct 10;18(1):101. doi: 10.1186/s13058-016-0763-8
Review
For citations:
Makarov V.V., Stekolnikov A.A. On some “dark” elements of bovine leukemia. Legal regulation in veterinary medicine. 2025;(1):41-51. (In Russ.) https://doi.org/10.52419/issn2782-6252.2025.1.41