Preview

Legal regulation in veterinary medicine

Advanced search

Modeling of spatiotemporal data about the environment in GIS

https://doi.org/10.52419/issn2782-6252.2022.3.43

Abstract

A large number of sensors are used to monitor the environment, and a large volume of spatio-temporal data on epizootic risks and the environment is processed in real time. To date, GIS data models are represented by static models and more modern time models. However, many of the epizootological and environmental data management systems do not meet the requirements of real-time data management. The purpose of the work is to propose, based on the analysis of foreign literature sources, a modern method for managing epizootological and environmental data based on a new GIS model in real time in comparison with the Sensor web service model.

Two experiments were conducted in the urban environment and on the territories of livestock farms with different epizootic situations for potential risk management in zoonoses. Real-time monitoring of air quality and real-time monitoring of soil moisture was carried out in Wuhan (China). The circulation of pathogens of zoonoses and sapronoses in the environment, including in the soil, and their preservation in the form of spores and hard-to-cultivate forms, determines the ecological component of emergent epizootics and epidemics with the coverage of new areas. Experimental results have shown that the use of the proposed GIS data model on the Sensor web service platform for managing epizootological/epidemiological and environmental data in real time is reliable and effective.

About the Authors

V. A. Kuzmin
St. Petersburg State University of Veterinary Medicine
Russian Federation

Vladimir A. Kuzmin, Dr.habil of Veterinary Sciences, Prof.



S. I. Shanygin
Saint Petersburg State University
Russian Federation

Sergei I. Shanygin, Dr.habil of Economics, Docent



S. An. Chunin
St. Petersburg Electrotechnical University "LETI" named after V. Ulyanov (Lenin)
Russian Federation

Sergei An. Chunin



G. S. Nikitin
St. Petersburg State University of Veterinary Medicine
Russian Federation

Georgy S. Nikitin, PhD of Veterinary Sciences, Docent



M. E. Mkrtchyan
St. Petersburg State University of Veterinary Medicine
Russian Federation

Manya Ed. Mkrtchyan, Dr.habil of Veterinary Sciences, Docent



Z. G. Kaurova
St. Petersburg State University of Veterinary Medicine
Russian Federation

Zlata G. Kaurova, PhD of Biological Sciences, Docent



D. A. Orekhov
St. Petersburg State University of Veterinary Medicine
Russian Federation

Dmitry An. Orekhov, PhD of Veterinary Sciences, Docent



A. V. Tsyganov
St. Petersburg State University of Veterinary Medicine
Russian Federation

Andrey V. Tsyganov, PhD of Pedagogical Sciences, Docent



A. B. Aidiev
St. Petersburg State University of Veterinary Medicine
Russian Federation

Akhmed B. Aidiev, PhD of Veterinary Sciences



N. V. Mishchenko
St. Petersburg State University of Veterinary Medicine
Russian Federation

Natalia V. Mishchenko, PhD of Biological Sciences, Docent



V. V. Achilov
St. Petersburg State University of Veterinary Medicine
Russian Federation

Vadim V. Achilov, PhD of Veterinary Sciences, Docent



References

1. Zander F., Kralisch S., Busch C., Flugel WA. Environmental data management with the River Basin Information System.// In: Chan F, Marinova D, Anderssen RS, editors. 9th International Congress on Modelling and Simulation. Perth, Australia: Modelling and Simulation Society of Australia and New Zealand Inc.; 20. P. 3191–3197.

2. Zhu L., Zhou Y.M, Wu B,F,, Luo Z,M. ArcObjectsbased eco-environmental data management information system for Three Gorges Project. //In: International Conference on Information Technology and Computer Science. Kiev, Ukraine: Ieee Computer Soc; 2009. P. 263–266.

3. Pokorny J. Data-base architectures: Current trends and their relationships to environmental data management. // Environ Model Softw. 2006;2():579–586.

4. Sun L., Lei S., Chen Y., Hsieh H., Pepper D. Enviornmental data management system from data monitoring, acquisition, presentation to analysis. http://ncacm.unlv.edu/HTML/research/daq/publication_daq__pdcs2002.pdf.

5. Liu J., Zhang X., Jian X.Y., Jiang B., Chi T.H.. Research on Marine Environmental Data Management in China Digital Ocean Prototype System // In: IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI:IEEE; 200. p. 238–232. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=565468&tag=1

6. Bröring A., Echterhoff J., Jirka S., Simonis I., Everding T., Stasch C., et al. New generation sensor web enablement // Sensors. 20;(3):P.2652–2699.

7. Gong J., Wu H., Gao W., Yue P., Zhu X. Geospatial service Web // In: Li D, Shan J,Gong J, editors. Geospatial technology for earth observation// 2009. vol. Chapter 13. 1st ed. New York: Springer; P. 355–79. http://www.barnesandnoble.com/w/geospatial-technology-for-earth-observation-deren-li/1117115908?ean=9781441900500.

8. van Zyl T.L., Simonis I., McFerren G. The Sensor Web: Systems of sensor systems. //Int J Digital Earth. 2009;2(1):P.16–30.

9. Gong J., Li X., Wu H. Spatiotemporal data model for real-time GIS. //Acta Geodaetica Cartographica Sin. 2014;43(3):P.226–32.

10. Hägerstrand T. What about people in Regional Sci-ence? //Papers Reg Sci Assoc. 1970;24(1):P.6–21.

11. Yu H. Spatio-temporal GIS design for exploring inter-actions of human activities. //Cartogr Geogr Inf Sci. 2006;33(1):P.3–19.

12. Armstrong M. Temporality in spatial databases. //In: Proceedings of the Proceedings: GIS/LIS, San Antonio. 1988. P. 880–9.

13. Peuquet D., Duan N. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geograph-ical data. //Int J Geogr Inf Syst. 1995;9(1):P.7–24.

14. Langran G. Temporal GIS design tradeoffs. // J Urban Reg InfSyst Assoc.1990;2:P.16–25.

15. Langran G. Time in geographic information systems. // London: Taylor & Francis;1992.

16. Chrisman N. The role of quality information in the long-term functioning of a geographic information system // Cartographica. 1983;21(2&3):P.79–87.

17. Langran G., Chrisman N. A framework for temporal geographic information. Cartographica // Int J Geogr Inform Geovisualization. 1988;25(3):P.1–14.

18. Yuan M. Temporal GIS and spatio-temporal modeling. // In: Proceedings of Third International Conference Workshop on Integrating GIS and Environment Modeling. 1996.

19. Worboys M., Hearnshaw H., Maguire D. Objectoriented data modelling for spatial databases. //Int J Geogr Inf Syst. 1990;4(4):P.369–83.

20. Worboys M. A unified model for spatial and temporal information // Comput J. 1994;37(1):P.26–34.

21. Gong J. An object-oriented spatio-temporal data model in GIS // Acta Geodaetica Cartographica Sin. 1997;26 (4):P.289–298.

22. Lu F., Li X., Zhou C., Yin L. Feature-based temporalspatial data modeling state of the art and problem discussion. // J Image Graph. 2001;6(9):P.830–835.

23. Pang M., Shi W. Development of a process-based model for dynamic interaction in spatio-temporal GIS. // GeoInformatica. 2002;6(4):P.323–44.

24. Xue C., Zhou C., Su F., Dong Q., Xie J. Research on process-oriented spatio-temporal data model // Acta Geodaetica Cartographica Sin. 2010;39(1):P.95–101.

25. Renolen A. History graphs: Conceptual modelling of spatiotemporal data. //In: Proceedings of GIS Frontiers in Business and Science. Brno, Czech Republic: International Cartographic Association; 1996.

26. Hatcher G., Maher N. Real-time GIS for marine applications [M] // DAWN J. WRIGHT D J B. In: Marine and Coastal Geographical Information Systems. New York: Taylor & Francis; 2000. P. 137–147.

27. Zlatanova S., Holweg D., Coors V. Geometrical and topological models for real-time GIS [C] // In: Proceedings of the UDMS. 2004. P. 27–29.

28. Goodchild M. Looking forward: Five thoughts on the future of GIS. // http: www.esri.com/news/arcwatch/0211/future-of-gis.html.

29. Chen P.P. The entity-relationship model–toward a unified view of data. //ACM Trans Database Syst. 1976; Vol.1, Issue 1.P.9–36.

30. Goodchild M. Geographical data modelling // Comput Geosci. 1992;18(4). P.401–408.

31. Yuan M. Representing complex geographic phenomena in GIS. //Cartogr Geogr Inf Sci. 2001;28(2):P.83–96.

32. Chen N., Di L., Yu G., Gong J. Geo-processing workflow driven wildfire hot pixel detection under sensor web environment. //Comput Geosci.2010; 36(3):P.362–372.

33. Chen N., Li D., Di L., Gong J. An automatic SWILC classification and extraction for the AntSDI under a Sensor Web environment. // Can J Remote Sens.2010;36 (Supplement 1):P.1–12.

34. Chen N., Chen Z., Di L., Gong J. An efficient method for near-real-time on-demand retrieval of remote sensing observations. // J Selected Topics Appl Earth Observations Remote Sensing. 2011;4(3):P.615–625.

35. Chen Z., Di L., Yu G., Chen N. Real-time on-demand motion video change detection in the sensor web environment. // Comput J. 2011;54(12):P.2000–2016.

36. Cox S. Observations and Measurements XML Implementation. http://portal.opengeospatial.org/files/?artifact_id=41510.

37. Botts M. OGC® SensorML: Model and XML Encoding Standard. = OGC® https://portal.opengeospatial.org/files/?artifact_id=55939.

38. Bröring A., Stasch C., Echterhoff J. OGC® Sensor Observation Service Interface Standard. https://portal.opengeospatial.org/files/?artifact_id=47599.

39. Simonis I., Echterhoff J.. OGC® Sensor Planning Service ImplementationStandard. http://portal.opengeospatial.org/files/?artifact_id=38478.

40. Echterhoff J., Everding T. OpenGIS® Sensor Event Service Interface Specification (proposed). http://portal.opengeospatial.org/files/?artifact_id=29576.

41. Schut P. OpenGIS® Web Processing Service. http://portal.opengeospatial.org/ files/?artifact_id=24151.

42. The Sensor Web Common Service Platform. http://gsw.whu.edu.cn:9002/SensorWebProEng/.

43. Chen N., Yang X., Wang X. Design and implementation of geospatial sensor web information public service platform // J Geo-information Sci.2013;15(6):P.887–894.

44. The Map World. http://en.tianditu.com/map/index.html.

45. Technical Assistance Document for the Reporting of Daily Air Quality –the Air Quality Index (AQI). http://www.epa.gov/airnow/aqi-technical-assistance-documentdec2013.pdf.

46. Baudet S, Frene P. General packet radio service. // Alcatel Telecommunications Rev. 1999;2:P.125–130.

47. Bettstetter C., Vogel H., Eberspacher J. GSM phase 2 +general packet radio service GPRS: architecture, protocols, and air interface // Ieice Trans Commun.2000;E83B (2):P.117–118.

48. Lu G., Wong D. An adaptive inverse-distance weighting spatial interpolation technique. // Comput Geosci. 2008;34(9):1044–1055.

49. Mueller T., Pusuluri N., Mathias K., Cornelius P., Barnhisel R., Shearer S. Map quality for ordinary kriging and inverse distance weighted interpolation. // Soil Sci Soc Am J. 2004;68(6):P.2042–2047.

50. Mueller T., Dhanikonda S., Pusuluri N., Karathanasis A., Mathias K., Mijatovic B. et al. Optimizing inverse distance weighted interpolation with cross-validation. // Soil Sci. 2005;170(7):504–15.doi:10.1186/1476-072X-142 Cite this article as Gong J.J. et al.:Real-time GIS data model and sensor web service platform for environmental data management.// International Journal of Health Geographics. -2015. -14:2.P.4-13

51. SanPiN 2.1.7.1287-03. Sanitary and epidemiological requirements for the quality of soil and soils dated April 17, 2003 No. 53.Registered with the Ministry of Justice of the Russian Federation on May 5, 2003 No. 4500.


Review

For citations:


Kuzmin V.A., Shanygin S.I., Chunin S.A., Nikitin G.S., Mkrtchyan M.E., Kaurova Z.G., Orekhov D.A., Tsyganov A.V., Aidiev A.B., Mishchenko N.V., Achilov V.V. Modeling of spatiotemporal data about the environment in GIS. Legal regulation in veterinary medicine. 2022;(3):43-50. (In Russ.) https://doi.org/10.52419/issn2782-6252.2022.3.43

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-6252 (Print)